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Abstract 

The superlattice unit-cell structure factors are calcu- 
lated for the ~rapeziform model, which may be used 
for the epitaxically prepared one-dimensional super- 
lattice crystals if the interdiffusion is taken into 
account. The particular cases of this model are: (1) 
the rectangular model, which describes the super- 
lattice if the interdiffusion is negligible; (2) the 
triangular model, which describes the superlattice if 
the interdiffusion takes place all over the layer thick- 
ness. The change of satellite intensities during the 
interdiffusion is discussed. The results obtained may 
be used to interpret the X-ray diffraction patterns 
produced by superlattices. 

1. Introduction 

The characteristic feature of X-ray diffraction by 
superlattices (SL) or modulated structures is the pres- 
ence of satellites around the principal diffraction 
maximum, the location of which is defined by an 
average over the SL period lattice parameters. At 
Zo'~ ft, (Zo and A being the SL period and the mean 
extinction length of the crystal, respectively) the 
angular separation between satellites is inversely pro- 
portional to the SL period, and their widths and 
intensities depend on the real structure and the SL 
thickness. In order to interpret the experimental data 
obtained from the X-ray reflection curves, various 
models have been proposed for the SL. 

Firstly, Kochendrrfer (1939) and Daniel & Lipson 
(1943, 1944) theoretically considered the sinusoidal 
modulations of the lattice parameter and structure 
factor in some alloys to explain the appearance of 
satellites around the principal maximum. Though 
their results qualitatively explained the experimental 
data, there have also been some essential dis- 
crepancies. 

Hargreaves (1951) considered the SL square-wave 
model but because of approximations the results 
turned out to be the same as those for the sinusoidal 
model. 
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Then various theoretical models have been pro- 
posed for longitudinal and transverse modulations 
(Balli & Zakharova, 1954; Tiedema, Bouman & 
Burgers, 1957; Biederman, 1960; Guinier, 1955), 
which were extensively reviewed by de Fontaine 
(1966) and Korekawa (1967). All the above- 
mentioned models relate to the lattice parameter and 
structure factor modulations in binary and ternary 
alloys. 

Esaki & Tsu (1970) proposed and realized the idea 
of obtaining the SL by heterojunctions using 
molecular beam epitaxy. For such a SL SegmiJller & 
Blakeslee (1973) proposed the sinusoidal model 
including the second harmonic. 

In all the above-mentioned works the derivation 
of the SL reflection amplitude formula was carried 
out by the use of the solution for sinusoidal modula- 
tion, when expanding in a Fourier series the periodic 
function of the chosen SL. The result is a sum of the 
infinite series of Bessel functions. Because of a rapid 
convergence of the series the authors usually con- 
sidered only the few first terms. Of course, such a 
procedure gives very approximate results if the series 
is a slowly converging one. The direct calculation of 
the reflecting amplitude for the transverse modulation 
of rectangular and triangular forms was performed 
by Brhm (1975). In his consideration the lattice para- 
meter was taken as being unchangeable and only the 
alteration of the atom positions was taken into 
account. Therefore, the formulae obtained by B/Shm 
are valid only for certain types of modulations in 
antiferroelectrics and for specific types of twinning, 
and they are not applicable for the rectangular model 
of SL based on the heterojunctions of GaAs-AIAs 
type. For such types of SL Segmiiller & Blakeslee 
(1973) obtained a formula for the reflection ampli- 
tude, but they did not make any detailed analysis to 
enable a direct comparison with the experiment. 

Kolpakov, Khapachev, Kouznetzov & Kouz'min 
(1977) proposed a trapeziform model for the SL based 
on heterojunctions, the interdiffusion of the com- 
ponents between the neighboring layers being taken 
into account. However, the expression obtained by 
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them for the reflection amplitude is not applicable 
for practical analysis, and it is difficult to form any 
conclusions concerning the form of satellites. 

The SL model consisting of ideal layers with equal 
thicknesses and having equal shifts of crystalline lat- 
tices is considered by Vardanyan & Manoukyan 
(1982). With such a model the overlapping stacking- 
fault defects and antiphase boundaries are described. 

In the present paper, based on the theory developed 
in paper I (Vardanyan, Manoukyan & Petrosyan, 
1985) the structure factor for the trapeziform SL cell 
model is calculated. From the formula obtained the 
structure factors for the rectangular and triangular 
SL cell models are found. The formulae are x~f a 
simple form and useful for the analysis. The designa- 
tions are the same as those in paper I (hereafter 
referred to as I). 

2. Trapeziform model 

The artificial SL crystals (of GaAs-A1As type) may 
be approximately described by the trapeziform 
model, in which the diffusion between alternating 
layers is taken into account. It is supposed that the 
layer thickness is less •than the critical thickness for 
misfit dislocation production (Matthews & Blakeslee, 
1974). For such a model the deviation function from 
the Bragg angle is of the form (see Fig. 1) 

s~ if z < z~ 

s l+AS(z - - z l )  i f z l < z < z l + z d  
Zd 

S(Z)= S2 i f z~+Zd<Z<Zl+Z2+Zd 

s _a (z_z _ z  
Z d  . . 

if Zl + z2 + zd < Z~ + z2 + 2za, 
(1) 

where 
Z 0 = Z 1 "~ Z 2 "at- 2za (2) 

is the SL period, zd is the transition-layer thickness 
and the quantity 

As=s2-si,=2ksin  B(ad/J) (3) 
characterizes the degree of a heterojunction misfit, 
Ad = d z -  d~ is the difference between the interplanar 
spacings, d is the mean interplanar spacing and k = 
1/A is the wave number in vacuum. 

The average over the SL period value of s(z) is 
Z 0 

f s(z)dz 
0 

=[s,(z,+za)tS2(Z2+Za)]/Zo: " (4) 

The diffraction maxima directions are defined from 
equation (I-32): 

g , , = m / z o  (m =0;  +1; +2; . . . ) .  (5) 

The angular separations between the mth 
maximum and the directions Sl =0 and s2=O are 
found from (3) and (4): 

where 

and 

S i r e  = Pi,,,As, (6a) 

Szm = P2mAs, (6b) 

p ,m=(m--e2- -ed) /eo ,  

P2m = (m + el + ed)/eO 

(7a) 

(7b) 

ej=Aszi ( j = 0 ;  1;2; d). (8) 

Note that Plm(e~ + Ca)+P2,,,(e2+ ed) = m. 
Since we consider the short-period SL, i.e. zo~A ,  

the Fourier components of the SL susceptibility may 
be represented in the form [equation (I-37)] 

Ixhml-- Mml hl, (9) 
where )?h is the mean value of the Fourier components 
of the crystal susceptibility. The coefficient Mm, which 
we call the SL cell structure factor, is defined by (1-31 ) 
and (I-35): 

z 0 

Mm=l(1/Zo) ~ exp [-2i7r i s ( z )dz]  dzl~=~,, , (10) 
0 0 

where the term of order A X h / #  h is neglected. 
Substituting (1) into (10) and taking the integral 

(Gradstein & Rizjik, 1971) we find 

Mm = [sin ('a'plmel) + (__1) m 
I 

sin (  p2m 2) 
I "n'pl meo "a'pEmeO 

- F l m - ( - 1 ) m F 2 m l ,  (11) 

where 

Fj,,, = ( e ~/2/Co) [sin ( zrpjmej ) U3/2(2qj 2 , 0) 

- ( - 1 )  j cos (-n'pj,,,ej) 2 U,/2(2qj,,,,O)], (12) 

qjm = ('ffed ) l/2pjm (13) 

. . . - . t . - - Z -  ¸ I I _ 
Zl Za Z2 Ze 

--X---- × X )1 

Fig. 1. A trapeziform SL model, z~ and z 2 are the thicknesses of 
the undiffused layers with interplanar distances d~ and d2, 
respectively. Zd is the transition-layer thickness. 
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and 
oo (_l )kx~,+2k 

U~(2x, 0) = ~_~ r ( ~ + 2 k +  l) 
k=O 

(14) 

is the two-variable Lommel function (Watson, 1944). 
The first and second terms in (11) are the contribu- 

tions of the undiffused parts of sublayers with thick- 
nesses z~ and z2 and the third and fourth ones are 
those for the transition layer with thickness Zd. 

Let us consider the particular cases of the 
trapeziform SL model. 

3. Rectangular model 

Taking into account that the interdiffusion of SL 
components takes place very slowly (Chang & Koma, 
1976), at the early stage after the preparation of SL, 
one may set Zd = 0  and from (7a), (7b) and (11) one 
obtains 

and 

p l , . = ( m - e 2 ) / ( e , + e 2 )  

P2,- = (m + el) /(el  + e2) 

(15a) 

(15b) 

1 ]sin(TrPi,,el) I M ~ = ~  . (16) 
7reo PlmP2m 

Note that sin (Trpl,,,el) = ( -  1 ) " sin (zrp2me2). 
It is seen from (16) that, when the superperiodicity 

is absent, i.e. at As~0 ,  all the satellites disappear 
except the principal maximum Mo = 1. 

For the principal maximum from (16) we obtain 

Mo=iS in y/el,  (17) 

where 

y = "trel e z / ( e l  + e2). (18) 

The structure factor Mo is an oscillating one and is 
significant at y <~ l, i.e. when 

As <<_ 1/zl + 1/z2. (19) 

Condition (19) means that the reflection curves of 
two sublayers with z~ and z2 thicknesses and dl and 
d E interplanar spacings, respectively, overlap each 
other. The structure factors of other maxima in that 
case are relatively small. 

If the misfit is great, 

AS ~ 1 /Z  I + 1/22, (20) 

i.e. when the reflection curves of two sublayers are 
separated, the structure factor M,, becomes appreci- 
able for those m at which ]sl,,,[ >> Isz,,[, or vice versa. 

if Isl~l ~ Isz~l, then 

M ~ - z ,  [sin(1rp,,,,.___.__e,) I (21a) 
zl + z2 " 1 1  7rpl reel 

and if Is=~l > Isl~l, then 

z2 ]sin (Trpzme2) I 
M,,, - - ~  . ( 2 1 b )  

Zl + Z21 "trp2me2 

Thus, when (20) is satisfied the diffraction maxima 
are located around the directions sl = 0 and s2 = 0, 
i.e. there are, in fact, two SLs, for which diffraction 
maxima directions do not overlap each other. 

If el = nl or e2 = n2 (nl and n2 integers), then from 
(15a), (15b) we obtain s2(-,,,)= 0 or sl,2 = 0, and from 
(16)_ 

M_,,, = z2/  ( Z I "~- Z2) (22a) 

M,,2 = zl/ ( zl + z2). (22b) 

4. Square-wave model 

If the sublayer thicknesses are equal (z, -- z2 = Zo/2), 
then from (16) 

f e__oo sin (~'eo/4) 7rl m2-e2o/41 f o r e v e n m  

Mm = eo [cos (rreo/4) I (23) 
-~1 ~-2 - - -e-~  for odd m. 

At eo'~ 1, from (23) we obtain 

(1-(7reo)2/96 for m = 0  

M,. = ~ e2o/4m 2 for even rn # 0 (24) 

(eo/7rm 2 for odd m. 

It is seen from (24) that at a small misfit the prin- 
cipal maximum only is appreciable. 

With the increase of eo the principal maximum 
oscillation decreases: 

Mo = sin ( 7reo/4)/(7reo/4). (25) 

At eo = 2m only the ruth maximum is appreciable 

M., =0.5,  (26) 

which means that at the angles of incidence g,. = 
+[ml/zo there will be maxima of equal intensity, 
because in the case of the square-wave model the 
diffraction pattern is symmetrical with respect to 
direction g = 0. 

5. Triangular model 

If the SL layers are thin, owing to the interdiffusion 
of SL components, different materials will be over- 
lapped throughout the layer. One may describe such 
an SL either by the sinusoidal model or by the sym- 
metrical triangular model. The SL structure factor for 
the sinusoidal model is defined by Daniel & Lipson 
( 1943, 1944): 

M,. = I J m ( e o / 2 ) l ,  (27) 
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where J,, is the Bessel function, and 

eo = Aszo =2huo, (28) 

h is the reciprocal vector, Uo the amplitude of modu- 
lation. 

The symmetrical triangular model becomes the par- 
ticular case of the trapeziform model if one sets 
z~ = z2 = 0, then the SL period is equal tO Zo = 2Zd. 

From (11)-(13), 

M m - - ( 2 e o ) U  2 U 1 / 2 ( 2 q 2 + ,  O ) - ( - 1 ) m u 1 / 2 ( 2 q ~ ,  0)[,  

(29) 

where 

q+ = (m + eo/2)('rr/2eo) 172 (30) 

In (29) one has to take into account that 

UI/2[(--X) 2, 0 ]  = - U I / 2 ( x  2, 0). 

For the principal maximum 

Mo=(2/eo)l /2u~/2(Treo/4,  0). (31) 

At eo~ 1, from (31), 

Mo = 1 - ~r2e2/240. (32) 

For the satellites m 5 0 ,  at eo~ l  we use the 
asymptotic formula for U~(x, 0) at x>> 1 (Watson, 
1944): 

U,(x,  0) = cos ( x / 2 - ~ r v / 2 )  

.(-I) k 

+ k=O ~ I ' ( u -  1 - 2 k ) ( x 1 2 )  2k+2-v  

f2eo/Tr2m 3 foreven m • 0 (33) 
M,. = [3eo2/.rr2m4 for odd m. 

yielding 

For several satellites Mm (eo) dependence on different 
SL models is shown in Fig. 2. 

6. T h e  c h a n g e  o f  S L  ce l l  s t r u c t u r e - f a c t o r s  d u r i n g  the  
i n t e r d i f f u s i 0 n  ' . 

The rectangular model describes the SL at the early 
stage after being prepared. Owing to the interdiffusion 
the layer boundaries successively become smooth 
(Chang & Koma, 1976). 

Let us designate the initial thicknesses of sublayers 
by Z~o and Z2o. As a result of the interdiffusion the 
transition layer of thickness zd is formed: 

. Zjo = zj;.+ Za. '..(j = 1,2), (34) 

where zj are the thicknesses of undiffused parts of 
sublayers. The SL period Zo and the mean values )?h, 
d and g are unchanged. The change of SL cell struc- 
ture factors during the interdiffusion is shown in 

Mrn 
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(d )  

Fig. 2. eo dependence of  Mm. Solid curve is for the triangular 
model,  dashed curve is for the sinusoidal model,  dotted curve 
is for the square-wave model.  (a) m = 0 ;  (b) m =  l;  (c) m = 2 ;  
(d) m = 5. 
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Fig. 3. The plots are d rawn for e~ = e2 = e. In this case The fract ional  change of  the structure factor  is 

where ej are defined by (8). 
The values ed = 0 and ed = eo/2 correspond to the 

square-wave and t r iangular  models,  respectively. 
During the interdittusion, at relatively small eo the 

SL structure factors vary monotonical ly,  while at large 
eo the variat ion is an oscillating one. 

At small thicknesses of  the transit ion layer (Zd ~ zj), 

i.e. at the beginning of  the interdiffusion process, one 
may neglect the X-ray diffraction on this layer and 
make use of  the approx imat ion  SjmZd ~ 1, i.e. cb~ ~ 1. 

Keeping only the first term in the Lommel function 
expansion [(14)], from (11) and (12) we obtain 

M', , ,=  M r [ 1 - ( T r 2 / 6 ) e 2  p~,,p2,,,], (36) 

where M~, is the structure factor of the rectangular  
model  with sublayer  thicknesses Z~o and Z2o [(16)], 
and M ~  is that  for the t rapeziform model,  ptm and 
P2,1 are given by ( 15 a)  and ( 15 b). 

Mt'D 
1'0 

M/D' 
1"0' 

0.9 

0.5. 

0.3 

e o = 2 ( e + e d ) ,  (35) M',,, - M r  2 
r = - - - e 2 a p l , , P 2 ~ .  (37) 

Mm 6 

°. . . . . . . .  - - . . . . . . . . .  

O~ I I ed 

(a) 

0-5 . . . . .  ~ .  

." ~ .  " /  -;J:-. 
. . . . . . . . . . ' "  / / / i  .. 

0 1 5 

(b) 
=ig. 3. e d dependence of Mm. (a) e d + e  =0"5 and (b) ea+e =5. 

Solid curve is for m = 0, dotted curve for m = 1, dashed curve 
for m = 2 and dot-and-dash curve for m = 5. 

Since in the kinematical  theory the intensity of  the 
mth satelite is Rm - M ~ ,  the fractional change of  Rm 
is 

R t _ R r ,rl. 2 
nl m 

zam - - e2dplmp2m. (38) 
R~ 3 

Equat ions (28) and (29) show that Mm and Rm 
increase if s~m and S2m are of  opposite sign, i.e. when 
the direction g,, lies within the directions s, = 0 and 
s2 = 0, and decrease if s~m and s2m are of  the same 
sign. This means  that M,, increases when - e l o <  m < 
e2o, and decreases otherwise. In the case when the 
initial model  is of  square-wave type, i.e. e~o = e2o = 
eo/2, then M~ increases if Iml < eo/2. 

Thus, the structure factor  of  the principal max imum 
increases as a result of  the interdiffusion, since the 
latter appears  to reduce the superlattice to the crystal 
with averaged parameters .  That  is true if the thickness 
of  the transi t ion layer is small and,  when the X-ray 
diffraction on the transit ion layer is significant, the 
structure factors will have an oscillatory behavior.  
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